半岛体育 分类>>

传统符号语言传递知识太低效?探索LLM高效参数迁移可行性

2025-06-05 20:06:34
浏览次数:
返回列表

  半岛,半岛体育,半岛体育app,半岛官网,半岛电竞,半岛真人,半岛棋牌,半岛体育官网注册,半岛体育官方app下载,半岛体育官方注册网址,半岛体育平台官网注册链接,半岛体育app下载,半岛体育怎么样,半岛体育官网,半岛体育登录入口,半岛体育官方网站,半岛最新入口,半岛下注,半岛投注

传统符号语言传递知识太低效?探索LLM高效参数迁移可行性

  论文首先通过简单的前置实验,挖掘出参数空间的对齐是实现参数知识迁移的必要条件。现有的参数对齐方法Seeking通过梯度定位部分较大 LLM 参数以适配较小 LLM 张量形状,将其初始化为 LoRA 矩阵通过后续微调实现迁移,称之为后对齐参数迁移方法(Post-Align PKT)。论文为了更全面探索 PKT 是否可行,根据对齐时机提出先对齐知识迁移(Pre-Align PKT)新范式,采用定位后对齐(Locate-then-Align,LaTen)方法实现参数对齐。

  对于 Post-Align PKT,论文将其同利用 SVD 从模型自身获取 LoRA 的 PiSSA 方法对比,结果发现 PiSSA 在相同设置下优于 Seeking,证明从较大模型抽取的参数知识不如利用模型自身知识作为 LoRA 初始化,进一步怀疑其可行性。对于 Pre-Align PKT,结果显示,只需要极少的训练步数和数据开销,LaTen 能有效取得性能提升。但是 Pre-Align PKT 通过训练实现参数对齐的方式受到极大限制,无法超越较大 LLM 的能力上界,同时训练不太稳定,没有明显收敛。

  如图 4 所示,Llama2-7B 和 13B 之间的相似性较低,尤其是在多头自注意力(MHSA)模块中,该模块在信息整合中扮演着至关重要的角色。有趣的是,上投影层的相似性较高,这可能是因为它们作为关键记忆,捕捉特定的输入模式,而这些模式通常在不同模型间是一致的。跨规模大模型之间的低相似性也解释了为何从同一模型衍生的 LoRA 表现更好,因为它与模型的内在行为更为贴合。证明跨规模大语言模型之间的表示相似性较弱是导致神经不兼容性的关键因素之一,这使得理想的参数知识转移成功变得困难。

搜索